NDU

Name:

Section: \qquad

Grade:

You have 6 pages and 4 problems
Phones are forbidden.

1) ($\mathbf{3 2}$ points) For each of the following multiple-choice questions, circle the letter of the correct answer. If more than one letter is circled in the same problem, you will receive no credit for that problem.

Question A (16 points) Use the method of Lagrange Multipliers to find the maximum value or the minimum value of the function $f(x, y)=x^{2}+y^{2}-5$ subject to the constraint $x^{2}+y^{2}-2 x-4 y=0$.

Part I (8 points): The Lagrange method yields to the system of equations:
a) $x=\lambda(x-1)$
$y=\lambda(y+2)$
$x^{2}+y^{2}=2 x+4 y$
b) $x=\lambda(x-1)$
$y=\lambda(y-2)$
$x^{2}+y^{2}=2 x+4 y$
c) $x=\lambda(x+1)$

$$
y=\lambda(y-2)
$$

$$
x^{2}+y^{2}=2 x+4 y
$$

d) $x=\lambda(x+1)$
$y=\lambda(y+2)$
$x^{2}+y^{2}=2 x+4 y$

Part II (8 points): The maximum value is:
a) 0
b) -5
c) 15
d) 20

Question B (8 points)

$\int_{-2}^{0} \int_{0}^{\sqrt{1-(x+1)^{2}}} \frac{x y}{2\left(x^{2}+y^{2}\right)} d y d x=$
a) $-\frac{1}{4}$
b) $\frac{1}{4}$
c) $\frac{1}{2}$
d) $-\frac{1}{2}$

Question C (8 points)

The value of $\int_{-1}^{1} \int_{x^{2}}^{1} \frac{\sec ^{2} y}{\sqrt{y}} d y d x$ is:
a) $\tan 1$
b) $-2 \tan 1$
c) $-\tan 1$
d) $2 \tan 1$
2) (22 points) We consider the following double integral $\int_{0}^{\sqrt{3}} \int_{0}^{\sqrt{4-x^{2}}} x \sqrt{x^{2}+y^{2}} d y d x$
a) ($\mathbf{1 2}$ points) Set up an equivalent integral using the order of integration $d x d y$. (Do not evaluate).
b) (10 points) Set up to an equivalent polar integral using the order of integration $d r d \theta$. (Do not evaluate).
(21 points) Let D be the tetrahedron cut from the first octant by the plane $x+y+z=2$.
a) (5 points) Draw D.

b) (8 points) Set up triple integrals in rectangular coordinates representing the volume of D according to the order of integration $d y d x d z$.
c) ($\mathbf{8}$ points) Set up triple integrals in rectangular coordinates representing the volume of D according to the order of integration $d x d z d y$.
3) (27 points) Let D be the solid region bounded from below by the surface $z=x^{2}+y^{2}$, on the sides by $x^{2}+y^{2}=1$ and from above by $z=4$.
a) (5 points) Draw the region D.
b) ($\mathbf{8}$ points) Find the volume of D using cylindrical coordinates and the order of integration $d z \mathrm{dr} \mathrm{d} \theta$
c) (14 points) Set up triple integrals in cylindrical coordinates representing the volume of D according to the order of integration $d r \mathrm{dz} \mathrm{d} \theta$.

