NDU

MAT 224

Calculus IV

Spring 2016, Exam # 2

Monday May 16, 2016

Duration: 60 minutes

Name:

Section:

Grade:

You have 6 pages and 4 problems

Phones are forbidden.

1) (32 points) For each of the following multiple-choice questions, circle the letter of the correct answer. If more than one letter is circled in the same problem, you will receive no credit for that problem.

Question A (16 points) Use the method of Lagrange Multipliers to find the maximum value or the minimum value of the function $f(x, y) = x^2 + y^2 - 5$ subject to the constraint $x^{2} + y^{2} - 2x - 4y = 0$.

Part I (8 points): The Lagrange method yields to the system of equations:

a) $x = \lambda(x-1)$ **b**) $x = \lambda(x-1)$ $y = \lambda(y+2)$ $y = \lambda(y-2)$ $x^{2} + y^{2} = 2x + 4y$ $x^2 + y^2 = 2x + 4y$ c) $x = \lambda(x+1)$ **d**) $x = \lambda(x+1)$ $y = \lambda(y - 2)$ $y = \lambda(y+2)$ $x^2 + y^2 = 2x + 4y$ $x^{2} + y^{2} = 2x + 4y$

Part II (8 points): The maximum value is:

0

a) b) -5 **c**) 15 **d**) 20

- 2) (22 points) We consider the following double integral $\int_{0}^{\sqrt{3}} \int_{0}^{\sqrt{4-x^{2}}} x\sqrt{x^{2} + y^{2}} dy dx$
 - a) (12 points) Set up an equivalent integral using the order of integration dxdy. (Do not evaluate).

b) (10 points) Set up to an equivalent polar integral using the order of integration $drd\theta$. (Do not evaluate).

social club

- (21 points) Let D be the tetrahedron cut from the first octant by the plane x + y + z = 2.
 - a) (5 points) Draw D.

b) (8 points) Set up triple integrals in rectangular coordinates representing the volume of D according to the order of integration dy dx dz.

c) (8 points) Set up triple integrals in rectangular coordinates representing the volume of D according to the order of integration dx dz dy.

alclub

- 3) (27 points) Let D be the solid region bounded from below by the surface $z = x^2 + y^2$, on the sides by $x^2 + y^2 = 1$ and from above by z = 4.
 - a) (5 points) Draw the region D.

b) (8 points) Find the volume of D using cylindrical coordinates and the order of integration $dz \, dr \, d\theta$

social club

c) (14 points) Set up triple integrals in cylindrical coordinates representing the volume of D according to the order of integration $dr dz d\theta$.

